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Theoretical and experimental results are reported on the thermal lensing effect caused by the radial
thermal gradient present in optically pumped Nd: YAG laser rods. The presented theory is in agree-
ment with the experimental observations. The results reveal that a Nd:YAG rod under pumped light
becomes a positive lens with two focal lengths. The temperature dependent variation of the refractive
index constitutes the major contribution of the thermal lensing. The stress dependent variation of the
refractive index modifies the focal length about 20%. The effect of end-face curvature caused by an
elongation of the rod is less than 6%.

1. Introduction

Any solid laser material operating in either the steady
state or cw mode of operation must dissipate an ap-
preciable amount of heat. The heat arises from the
radiationless transitions in the material, i.e., the energy
differential from pump to fluorescent bands, and a
quantum efficiency less than one. In the cylindrical
geometries generally used, the heat is removed on the
circumferential surface of the cylinder, thereby gen-
erating a radial thermal gradient. The change in
temperature within a laser rod causes a thermal dis-
tortion of the laser beam due to a temperature and
stress dependent variation of the refractive index. In
addition, the generated stresses induce birefringence.
The knowledge of the heat dissipated by the YAG rod
permits one to calculate the radial temperature gradient,
and, subsequently, stresses and strain, change of index
of refraction, thermal lensing, and birefringence in the
crystal can be computed.

Thermal lensing has been discussed by Osteripk. 1

In this paper, a detailed analysis is presented of the
various effects contributing to thermal lensing. The
presented theory is in good agreement with the experi-
mental observations.

The experiments were performed with a cw pumped
Nd: YAG crystal 7.6 cm long and 6.39 mm in diameter.
The crystal was pumped by two water cooled cw arc
lamps filled with krypton. The pumping cavity con-
sisted of a double elliptical cylinder. Cooling of the
rod was accomplished by circulating water in a jacket

surrounding the crystal. The cw output power of
this laser was 250 W at an input of 12 kW.

11. Theory

For a cylindrical rod with thermal conductivity K,
in which heat is uniformly generated at a rate A per
unit volume, the steady state temperature at any point
along a radius of length r is given by2

T(r) = To - Aor'/4K,

where To is the temperature at the center of the rod.
Ao is given by

AO = Pa/irro'L,

(1)

(2)

where Pa is the dissipated power in the crystal, r is
the radius, and L is the length of the rod, respectively.

If is the fraction of the electrical input power Pi.
into the lamps which is dissipated as heat in the rod,
then

Pa = SPin.

This equation assumes that the heat generated in the
rod is directly proportional to the power input to the
lamps. Upon substitution of A, one obtains from Eq.
(1)

T(r) = To- 7Pr 2 /4K7ro.2.

The thermal radial gradient as given by Eq. (4) intro-
duces a radial variation of the refractive index. The
change of the refractive index can be separated into a
temperature and a stress dependent variation. Hence

n(r) = no + An(r)T + An(r)e,
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(5)

where n(r) is the radial variation of the refractive index,
no is the refractive index at the center of the rod, An(r)?
and An(r)E are the temperature and stress dependent
changes of the refractive index, respectively.

The temperature dependent change of refractive
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index can be expressed as

n(r)' = no + (n/8T)[T(r) - To].

Substitution of Eq. (4) into Eq. (6) gives

7(r)' = no - (P11r%,q/4KgrLro)(Bn/6T),

or

by An(r),*. This means that a wave incident on
the crystal is focussed at two different focal points.

(6) Introducing Eqs. (14), (15), and (8) into (5) gives the
total radial variation of the refractive index.

(7)

An(r) = c(r2/ro2), (8)

where

C1 = -(nPj.n/4KrL)(Bn/51T). (9)

The refractive index of a crystal is specified by the
indicatrix, which is an ellipsoid whose coefficients are
the components of the relative dielectric impermeability
tensor.

A change of refractive index produced by stress is
given by a small change in shape, size, and orientation
of the indicatrix.3 The change is specified by the small
changes in the coefficients Bij. Neglecting the electro-
optic effect, the changes ABi1 are given by4

ABi = pklekl(ijk, = 1,2,3), (10)

where Pijkl is a fourth rank tensor giving the photo-
elastic effect. The elements of this tensor are the elas-
tooptical coefficients. k is a second rank strain tensor.

Since YAG is a cubic crystal, the indicatrix is a
sphere. Under stress the indicatrix becomes an ellip-
soid. Nd:YAG rods are grown with the cylindrical
axes along the [111] direction. The light propagates
in this direction and thus the change of the refractive
index along the [111] direction is of interest. The
equation of the indicatrix, for a plane perpendicular to
the [1111 direction, is given:

(B 0 + ABZ*,*)X*2 + (B 0 + AB,*,*)y* 2
= 1 (11)

This equation was obtained by transforming to the
principal coordinate system of the ellipse, where the
orientation of the x e and y are shown in Fig. 1.

The effect of AB *x* and AB,*,* is to change the
refractive index for a wave polarized along x* and y*,
respectively. With

B = (no2)-
1 (12)

And* -(no3)AB,*2*,

n(r),.* = no + C2 + (c, + c3)(r2/ro2 ),

n(r),E,,* = no + C3 + (cl + c 5 )(r
2

/r 0
2

).

(16)

(17)

The focal length of the YAG rod can be derived from
these equations by applying formulas given by Kogel-
nik5 for a lenslike medium. The focal length of a sec-
tion of length L for a lenslike medium is, according to
Kogelnik,

f = b(2n'o sin2L/b)-'. (18)

Where the refractive index is assumed to vary near the
optic axis, as in

n = n'o(1 - 2r'/b), (19)

the distance h of the principal planes from the ends of
the lenslike medium is given by

h = b/2n'o tan(L/b). (20)

Comparing Eqs. (19) and (16) gives

n'o = no + C, (21)

and

62 = -2(no + c2)ro2/(c + c). (22)

The focal length of the Nd:YAG rod under thermal
stress is then obtained from Eq. (18).

The numerical values reveal that 2L << b and 2 <<
no. Therefore,

sin (2L/b) 2L/b and n'o 0 no.

With these approximations, the focal length of the rod
is

X [IoA

y[r T]

An,* = -(nO)ABs**, (13)

and upon substitution of AB,*,* and AB*,* by the
expression derived in the Appendix, one obtains

An(r),f,* = c2 + c3(r2/r0
2),

A(r),y = 4 + c5(r
2/ro2 ),

(14)

(15)

where the parameters c2 , c3, C4, and c5 are defined in Eqs.
(A15) to (A17).

As can be seen from these expressions, the refractive
index is a parabolic function with radius. The change
of refractive index due to thermal strain is dependent
on the polarization of the light. The radial component
of the wave experiences a change given by An(r),_*
whereas the tangential component changes as given

Fig. 1. Crystal orientation for a YAG rod (top) and orientation
of indicatrix of a thermally stressed YAG rod in a plane per-

pendicular to the rod axis (bottom).
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= b/4noL. (23)

The distance h of the principal planes from the ends
becomes

h = L/2no. (24)

Before a final expression for the focal length is ob-
tained, the contributions caused by end effects will be
calculated.

Perturbations on the principal thermal distortion
pattern occurs in laser rods near the ends where the free
surface alters the stress character. The so-called end
effects account for the physical distortion in the flatness
of the rod ends. End effects in glass rods have been
considered by Snitzer' and La Marre.7 Self equilibrat-
ing stresses causing a distortion of flatness was found
to occur within a region of approximately one diameter
from the ends. The thermal gradient in sections of
the rod further away from the ends does not contribute
to the elongation of the rod. Instead, the crystal is
under compression and stresses are generated. The
elongation of the rod can be expressed as

1(r) = lo + (/5T)(T(r) - To), (25)

where lo is the length of the end section of the rod over
which expansion occurs, and

81/b = alo, (26)

where a is the thermal expansion coefficient.
Measurements performed on YAG rods (see Fig. 6)

indicate that the distortion of the flatness of the rod
can be best described by assuming an end section over
which expansion occurs to be approximately equal to
the radius of the rod (, r). The radius of the end
face curvature at each end of the rod follows from
Eq. (25):

R = -(d21/dr2)-. (27)

Introducing the parameters given by Eqs. (25) and (4)
into Eq. (27) yields

R = 2K7rLro'/, 1P7Pin1 o. (28)

The focal length of the rod caused by an end face cur-
vature is obtained from the thick lens formula of geo-
metric optics.4 It is

f = /2(no - 1). (29)

The final expression for the total focal length of the
rod is obtained by combining Eqs. (23) and (29):

f = +f"( = b o - ] . (30)
Upon substitution of b by Eq. (22), and R by Eq. (28)
gives

2K7rr,2 [Sn no'cac"+ 2(no 1)alol'
PinnP [ST 418(1-, + L I (31

The first term in the bracket of Eq. (31) represents the
contribution of the temperature dependent change of
the refractive index. The second term represents the
stress dependent change of the refractive index. The

last term gives the distortion caused by the end face
curvature of the rod. Equation (31) gives the focal
length fi of all rays polarized in radial direction. Sub-
stitution of c, by c" results in another focal length
f2 for rays polarized in tangential direction. Since a
linear polarized wave or a nonpolarized wave incident
on the crystal will have components in radial and tan-
gential direction, two focal points are obtained.

Introducing materials and operational parameters
into the equations results in an expression relating the
focal length of the rod to the electrical lamp input
power.

For Nd:YAG, the approximate values of the elasto-
optical coefficients are' pl = -0.0290, P12 = +0.0091,
and p44 = -0.0615.

Also for Nd :YAG, the following constants are given':
v is the 0.3 Poisson ratio; no is the 1.823 refractive index;
a, the 7.9 X 10-'/C thermal expansion coefficient;
K is 0.111 W/cm'C thermal conductivity of YAG at
70'C; and dn/(dt), the 7.3 X 10-6/0 C change of refrac-
tive index with temperature. "° The length of the
crystal was L = 7.5 cm, and the radius r = 0.31 cm.

The fraction of heat dissipated by the crystal to
electrical lamp input was measured" = 5 X 10-2.
This number was obtained from a calorimetric measure-
ment of the heat extracted in the rod cooling loop with
and without the Nd :YAG crystal in the pumping
cavity. With these numerical values and the param-
eters c = -1.311 and c = 0.17 from Eqs. (A10)
and (All), one obtains for the two focal lengths of
the YAG crystal

f = 1.41/Pi,

f2 = 2.0/Pi.,

(32)

(33)

where fi and f2 are in meters and Pi. is in kilowatts.
Both functions are plotted in Fig. 3. Comparing the
three terms in the bracket of Eq. (31) reveals that

An >no3ac" 2(no- )alo
ST 48(1 - ) L

In the expression for fi, for example, the ratio of these
terms is 7.3:1.88:0.54. This means that the tempera-
ture dependent variation of the refractive index repre-
sents the largest .contribution to thermal lensing.

111. Experiments

Figure 2 shows the experimental setup for the mea-
surement of the effective focal length with a He-Ne
gas laser. The collimated output from the gas laser
operated at 6328 A is passed through the YAG crystal,
the beam waist is measured as a function of the distance
from the second principal plane of the rod. The dis-
tance of the principal planes from the ends of the rod
is h = 2.05 cm.

For each given lamp input power two focal points
were observed as predicted by the theory. However,
the presence of two focal points made it difficult to
determine exactly each focal length. In addition, the
measurements were complicated by the large amount
of stray pump light incident on the screen, and by the
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Fig. 2. Experimental setup for the measurement of the effective
focal length with a gas laser.

fact that for high input powers the focal points were
inside the structure of the laser head. The result of
the measurement is shown in Fig. 3. The values
plotted in this figure represent the average focal length
of the rod as a function of the lamp input power. As
can be seen, the experimental data agrees fairly well
with the theoretical values, especially in view of the
fact that, due to the difficulties mentioned above, the
accuracy of the measurements is probably not better
than 20%.

As can be seen, the effective focal length is 10 cm at
maximum input. This illustrates the large effect of
the optical distortion. No difference in effective focal
length has been found if the rod was pumped with the
mirror removed or when the rod was actually lasing
between flat mirrors.

The effective focal length of the rod was also calcu-
lated by operating the optical resonator at the limit of
stable operation. From the theory of resonators by

Kogelnik' follows that a resonator is stable if -1 < G1 G 2

< + 1, where GI and G2 are dimensionless parameters
describing the design of the resonator. For a resonator
with internal optical elements, these factors are given
by Kogelnik as:

G = , [1_ -1 (d + d2 -
a2 f R, f j

G,=- _F _ Id d 
a, L f R2B, 1

(34)

(35)

where a, and a2 are the apertures of the mirrors 1 and
2, and d and d2 are the distances from the principal
planes.

In our experiments flat mirrors with identical aper-
tures have been used separated at equal distances from
the YAG crystal.

Therefore,

at = a2, R, = R2, and d, = d2 = d.

Equations (34) and (35) simplify, and we have

G = G2 = - df. (36)

Figure 4 shows the stability diagram of an optical

G2

A ; GI

B

/1 ,/ / d

Fig. 4. Stability diagram of an optical resonator. Shaded areas
indicate regions of unstable operation. Points A, B and C
correspond to plane parallel, confocal, and concentric resonators,

respectively.
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Fig. 3. Effective focal length of YAG crystal as a function of

lamp input power. The two theoretical focal lengths according
to Eq.. (31) are plotted (solid lines) together with experimental
values obtained with a gas laser (A) and values obtained from

resonator theory (0).

resonator as given by Kogelnik.' 2 The straight line
gives the position of a symmetrical resonator with an
internal lens of different focal length. Since the thermal
lensing of the crystal is a function of input the equiva-
lent resonator configuration changes from plane parallel,
to confocal and finally to concentric. Beyond this
point the resonator becomes unstable. In our experi-
ments the mirror separation had been changed until
the resonator became unstable, which is evident by a
decrease of output power for increasing input powers.
This was done for several input power levels. At the
point of unstable operation (see Fig. 4) the effective
focal length of the rod is given by:

f = d/2. (37)

The result of these measurements is also shown in
Fig. 3. The interpretation of the point of unstable
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operation is complicated by the fact that the laser out-
put was multimode, whereas Eqs. (34)-(37) are strictly
valid only for gaussian beams.

The values of the effective focal length as derived
from the resonator theory are lower than the values
obtained with the gas laser. However, the deviation is
within the accuracy of these two methods which we
believe is in the order of 20%.

In order to check the degree of physical distortion in
the flatness of the rod ends under pump light an experi-
ment as shown in Fig. 5 was performed. The colli-
mated beam of a He-Ne gas laser reflected off the first
surface of the Nd:YAG crystal was displayed on a
screen. An increase in spot size of the reflected beam
was observed, depending on the lamp input power.
If do and d are the spot sizes of the reflected gas laser
beam with and without pumping of the YAG crystal,
then

d /do-1

0X 100
I- 80.

ME 60- 
Z

4o 40 l oro /2
in 3

20- ocr
'1 15

0
10

I 2 3 4 5 79 12 15 20
LAMP INPUT POWER IN KW

Fig. 6. Theoretical (solid lines) and experimental () values of
the end face curvature of a YAG rod as a function of lamp input

power.

(38)

where R is the radius of the crystal front surface and
t = t + 2 is the distance from the reflecting surface
to the screen.

A noticeable change in spot size occurred only at
relatively high input powers. With t = 3 m and do
= 0.53 cm, the maximum spot size observed was di
= 1.06 cm at 12 kW pump power in the lamps. The
result of the measurements is shown in Fig. 6. The
strongest curvature of the rod ends occurring at maxi-
mum lamp input power was measured to be R = 6 m.

Figure 6 also contains the theoretical values for the
radius of the end face curvature as obtained from Eq.
(28) for two values of lo = r0 and lo = r/2. One ob-
tains R = 41/Pi, and R = 82/Pi, respectively, where
R is in meters and Pi. in kilowatts.

IV. Compensation of Thermal Lensing
As discussed in the last chapter, a focusing rod be-

tween flat mirrors is equivalent to a passive resonator
having curved mirrors. It is well known from resonator
theory" that stronger curved mirrors result in smaller

V

FAdT
-SCREEN

FILTER

YAG ROD 

BEAM - -

EXPANDER t

Fig. . Experimental setup for the measurement of the end face
curvature of a Nd:YAG crystal.

diffraction losses for higher order modes. Thus the
beam divergence of the laser increases according to
Omn = cmnK, where K is a constant and cn is the ratio
of radii of different modes with respect to the lowest
order mode. The value of Cm,, increases for increasing
mode numbers. In order to increase brightness of our
laser, we compensated for the spherical component of
the positive thermal lensing exhibited by the rod.
This was done by grinding negative spherical surfaces
on the ends of the rod. Although thermal lensing of
the rod is a volume effect, it can be treated in a first
order approximation, as if the focusing would be caused
by a positive end face curvature.

Several rods were polished with negative curvatures
on the ends. Since the rods were operated between
flat mirrors, it is desirable to undercompensate the
rod in order to achieve stable operation. For example,
we tested a rod with a R = -0.5-m curvature on both
ends. According to Eq. (29), this gives a negative
focal length of f = -0.3 m. The rod would therefore
be thermally compensated at an input level of 6 kW.
Operation of the crystal in the laser head revealed
that the threshold of this rod went up a factor of two.
The output was very unstable at low output powers.
However, above the compensation point as measured
with a He-Ne laser, the output power was very stable
and the beam divergence decreased by a factor of 2,
thus increasing the brightness by a factor of 4.

V. Summary

Theoretical and experimental results are reported on
the thermal lensing effect in optically pumped Nd:YAG
rods. It was found that a YAG crystal exhibits a
positive lens effect under pump radiation. Due to the
birefringence in the crystal two focal points are ob-
tained for each input power level depending on the
polarization of the beam.

The thermal focusing effect of the rod is mainly
caused by the temperature dependent variation of
the refractive index. Focusing effects caused by a
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distortion of the flatness of the crystal ends are negli-
gible.

The author acknowledges the technical assistance of
D. Rice and C. F. Zahnow.

C' = (7v - 1)(pal + 512 -
2P44)

+ 3(5v -
3 )(pnl + p12 + 2p44)

+ 8(v - 1)(pl, + 2 2 - 244). (A12)

Equation (A9) is obtained from Eq. (A6) by substitut-
ing Ao according to Eqs. (2) and (3).

With Eq. (13) the change in refractive index is

An,* = 2 + cr2/rO2, (A13)
Appendix

and
From Eqs. (16) and (17) given in Koechner and

Rice, 3 one obtains for the change of the indicatrix for
a plane perpendicular to the [111] direction:

AB.*.* = [pl(3E, + E + 2) + p12(3cr + 5e'b + 4e.)

+ 2p4(3er - D- 2ez)], (Al)

ABv ** = [pi,(er + 3e + 2) + p12(5er + 3ej. + 4e=)

- 2P44(fr - 3 e@ + 2 Ez)], (A2)

Any* = C4 + cr/r,2,

where

C2 = C4 = -no'Sc'./1 2,

C3 = no3Sc".,/12 ,

C5 = n3Sc'y/12.

where pi,, P12 and P44 are the elastooptical coefficients in
a cubic crystal and e,, eb and are the radial, tangen-
tial, and axial strains in the rod, respectively.

The strains in a cylindrical rod can be expressed as
follows' 1

14

i= S'[(3v - 1) - (7v - )r'/ro2], (A3)

e = S'[(3v - 1) - (5v - 3)r/r2], (A4)

and

E = S't2(v - 1) - 4( - 1)r'/ro]. (A5)

where

S' = azAoro'/(l - v)16K, (A6)

a is the thermal expansion coefficient, v is the Poisson
ratio, and K is the thermal conductivity.

Introducing Eqs. (A3) to (A5) into (Al) and (A2)
gives

B.*,* = S(c'. = c".r2/ro2)/6, (A7)
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